3 and 4 .Determinants and Matrices
normal

$\left| {\begin{array}{*{20}{c}}
{\sin \alpha }&{\cos \alpha }&{\sin \left( {\alpha  + \gamma } \right)}\\
{\sin \beta }&{\cos \beta }&{\sin \left( {\beta  + \gamma } \right)}\\
{\sin \delta }&{\cos \delta }&{\sin \left( {\gamma  + \delta } \right)}
\end{array}} \right|$ મેળવો.

A

$\sin \alpha \sin \beta \sin \delta $

B

$\cos \alpha \cos \beta \cos \delta $

C

$1$

D

$0$

Solution

Apply $\mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\cos \gamma . \mathrm{C}_{1}$

$\Delta  = \left| {\begin{array}{*{20}{c}}
{\sin \alpha }&{\cos \alpha }&{\cos \alpha \sin \gamma }\\
{\sin \beta }&{\cos \beta }&{\cos \beta \sin \gamma }\\
{\sin \delta }&{\cos \delta }&{\cos \delta \cos \gamma }
\end{array}} \right|$

$\Delta=0$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.